
Optical Relation of Plastically Deforming Polymer Solid 

INTRODUCTION 

Birefringent phenomena are examples of the electro-optical phenomena of deformable dielectrics. 
Many experimental studies of birefringence for polymers have been rep~rted. l -~ Theoretical bi- 
refringence has been reported for flowing polymer solutions (for example, polystyrene solutions) 
subjected to steady shear flow under the simplest possible relation (in which the stress tensor is equal 
to a constant multiple of the refractive index tensor plus an isotropic tensor).6 

In this note, starting from the optical theory: the optical relation is theoretically deduced for 
plastically deforming polymer solid in creep and for proportional loading (namely, where uniform 
stress rate increases with time). The deduced optical relation is useful for nonsteady inelastic de- 
formation as well as for steady inelastic deformation. Moreover, comparison of the deduced relation 
with the experimental results is discussed to ascertain the validity of the deduced relation. The 
optical relation of the first-order approximation gives good agreement with the actual observations 
obtained from the experiments in creep and for proportional loading tests using cellulose nitrate 
a t  65OC. Cellulose nitrate is commonly used in photomechanics, especially in photoplasticity'0J' 
and in photovis~oplasticity.~~ 

CONSTITUTIVE EQUATION OF PLASTICALLY DEFORMING POLYMER SOLID 

For plastically deforming polymer solid used in the present study, the strain in an element of the 
polymer solid is proposed to consist of the Hookean elastic strain E,, the plastic strain Ep,  and the 
creep strain E,. Here, the inelastic strain is defined as E; = E p  + E,. The elastic and the plastic 
strain components are expressed as12 

Sij ( E . . )  = - 
2G e 

and 

where Sij = q j  - &j&j is the deviatoric stress components of stress q j 8 ;  J Z  = Sij&,/2 is the second 
invariant of the deviatoric stress tenso$; and G, k, n are material constants. With the components 
of principal stress ul, uz, and us, JZ is expressed as 

1 
6 

Jz = - {(ol- ~ 2 ) '  + (a2  - ~ 3 ) '  + ( ~ 3  - ~1)') (3) 

The creep strain rate is approximately expressed as12 

@ij)c  = B ( t  + s ) ~  exp ( b  J P ) ( d J z / d ~ i j )  (4) 

where t and s denote current time and material constant time and B, d, and b are material constants. 
The dot over (EijL in eq. ( 4 )  represents differentiation with respect to time. 

In the present note, the stress state u1 # uz = u3 is adopted. If the differences of principal stresses 
and of principal strains are denoted by Au = u1 - u2 and AE = El - Ez, respectively, the elastic and 
the inelastic strains become12 

A 
2G 

&ye = 2 

and 

The total strain is expressed as 

h E = A E , + h E i  (7) 
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This constitutive equation has been verified experimentally to be a good approximation for the 
plastically deforming polymer solid.12J3 

BASIC RELATIONS OF BIREFRINGENCE 

The birefringent properties of a nonmagnetic solid depend on the index tensor q in the dielectric 
field.14 A solid after deformation is considered as an anisotropic one, and the electric induction D 
and the electric field strength B are related by the symmetrical tensor q, which is regarded as a 
function of the deformation state, as folows7: 

B = q D  (8) 

or 

Bk = 9kiDi 

Suppose that an optically isotropic polymer plate is placed in the circular polarized field of a po- 
lariscope so that the face of the plate is normal to the axis of wave propagation. Consider a section 
of the index ellipsoid cut by the diametral plane perpendicular to the axis of wave propagation. The 
section is an ellipse, and it then has two principal directions, which are called the secondary principal 
axes. By choosing the secondary principal direction axes X, (a = 1,2) as the coordinate axes, the 
ellipse is represented by 

(9) 

where 71 and 7 2  are the secondary principal values of q. The isochromatic fringe order per unit 
thickness in photomechanics is given by7 

ll(X1)2 + 92(X2)2 = 1 

where w ,  c, and V ,  = c& (a = 1,2) are the frequency, the light velocity under vacuum, and the 
velocities of the polarized light, respectively. 

Assuming that the solid is optically isotropic before deformation, the index tensor is rewritten 
as 

= 90 1 + 5 
or 

71 = 90 + 61, (11) 

where 70 and I are the index coefficient and the unit tensor I = ISijl, respectively. Equation (10) 
is approximately expressed for the principal values ijl and 5 2  as follows: 

(12) 

where A = 4 2 c  98’’). 
The anisotropy that replaces the original optical isotropy is assumed to consist of the following 

two parts as mentioned in the previous section. One part corresponds to the elastic strain tensor 
E, with regard to the change of orientation of molecular chains. Another part corresponds to the 
inelastic strain tensor Ei with regard to the permanent change of orientation of molecular chains 
appearing with the inelastic deformation of the solid and remaining even after vanishing of the 
stress. 

When the axes of two tensors E, and Ei coincide with each other, the index tensor 5 is proposed 
as a function of the two tensors. The index tensor is given as 

9 2  = 70 + i z  

N = A ( i i  - $2) 

5 = F(Ee, Ei) 

and the polynomial F of two tensors can be represented as in the following 

5 = ao I + alE, + a2Ei + a3E: + a4E: 
+ as(E,Ej + EiE,) + ac(EgEi + EiE:) 

+ a7(E,E: + ET E,) + as(E: Ef + ETEZ) (13) 

where ao, . . . ., as are coefficients composed of the invariants of E, and Ei. 
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If the first-order approximation is adopted in eq. (13) for convenience of practical applications 
as an example, the index tensor is represented as 

5j = a01 + alEe + apEi 

or 

i j l= a0 + alEel + azEi1, i j 2  = a0 + alEe2 + a2E;p (14) 

where the subscripts 1 and 2 of the strain components denote the principal values of the strain tensor. 
The fringe order per unit thickness for the first-order approximation is derived from eq. (12) as 
follows: 

N = Ci(Ee1 - E e d  + C2(Ei1 - Eiz )  (15) 

where C; and Cp are optical coefficients. In such a representation, as AE, = (Eel - E,z)  is propor- 
tional to Au = ul - uz as shown in eq. (5), eq. (15) is expressed as 

(16) N = Cl(Aa)  + Cz(AEi) 

where AEi = Eil - Eiz. 

EXPERIMENTAL 

Tests were performed using the uniaxial specimens made of 6-mm-thick cellulose nitrate plate 
a t  65OC in the axial tensile stress state: u1= Au, uz = u3 = 0. The experimental apparatus consists 
of three major systems, namely, an oil vessel with heater, a loading system, and instruments to record 
the load and deformation. The detailed descriptions of the specimen and the apparatus are shown 
in ref. 17. On a surface of each specimen, a square gauge mark was cut in a region of uniform stress. 
Axial elongation and cross contraction over the distance between the gauge marks cut on the specimen 
were measured to within 0.005 mm from photographs of the gauge marks using a magnifying projector. 
The difference of principal strains A E  = E l  - Ep was calculated in Green's strain systemg E ,  = c, 
+ (cJ2/2, where c, (a = 1,2) is conventiqnal engineering strain. The accuracy of strain thus obtained 
is within about 2 X lo-*. The fringe order of birefringence was measured by Tardy's method.lg 

Creep Tests 

The creep tests were performed under the loading of axial tensile stress u1 = Au. Each load was 
applied so as to obtain constant values of Au of 0.4,0.6,0.8,1.0, and 1.15 kg/mm2 at  65OC. 

Figure 1 shows the experimental creep relation between the total strain AE = AE, + AEi and 
time for each value of Au. Each curve is plotted using the average values of three test results. The 
circle symbols and solid curves in Figure 2 show the relations between the fringe order per unit 
thickness N and time corresponding to the results shown in Figure 1. 

Proportional Loading Tests 

In the proportional loading tests under axial tensile stress, u1 = Au increases linearly with time; 
Au = AUt, where AU is constant stress rate and t denotes current time. Each load was applied so 
as to obtain constant rates AU of 0.025,0.05,0.1, and 0.2 kg/mm2/min at  65°C. The open circles in 
Figure 3 show the relations between Au and the total strain AE for various values of AU. Each curve 
is plotted by using average values of three test results. In Figure 3, as eq. (5), that is, AE,(t) = 
Au(t)/(ZG), approximates the relation in the range of small value of time t (namely, in the range 
of small value of Au), the value of 2G is found from the experimental result in this range. The gra- 
dient 2G (= AulAE) is shown by the chain line in Figure 3. By the chain line AEi is divided into 
the elastic part AEe and the inelastic part AEi. Then, AEi is remarkably influenced by the values 
of AU. The solid circles in Figure 3 show the unloading relations between Au and AE for AU = -0.1 
and -0.2 kg/mm2/min (namely, the stress rate decreases with time). As shown by the solid circles 
in Figure 3 at  the early stage of the unloading process, the additional creep deformation continues 
to appear for the operating load even in the unloading process. These features of the inelastic de- 
formation have been also recognized for another cellulose nitrate s01id.l~ The circle symbols and 
solid curves in Figure 4 show the relations between Au and the fringe order per unit thickness N 
corresponding to the results shown in Figure 3. 
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Fig. 1. 

Time t ( m i n )  

Experimental creep relation between AE and time for each value of Au at 65°C. 

DISCUSSIONS AND CONCLUDING REMARKS 

In Figure 4, as the inelastic strain AEi may be negligibly small in the range of small value of time 
t (namely, in the range of small value of Au), the value of C1 in eq. (16) is found from the experimental 
result in this range. The gradient C1(= N/Au) is shown by the chain line in Figure 4. The value 
of Cz is determined from the distance between abscissas of the chain line and the experimental curve 
in the range of the large value of Au by using AE; in Figure 3. The coefficients in eq. (16) were de- 
termined from the results for AU = 0.05 kg/mm2/min shown in Figure 4, and they are as C1 = 0.23 
mm/kg and C2 = 1.7 mm-'. 

Time t ( m i n )  

Fig. 2. Relation between fringe order per unit thickness N and time for each value of Au in creep 
tests: (-O-) experiment; ( -  - -) eq. (16). 
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Fig. 3. Relations between Au and AE for various values of AU in the proportional loading tests: 
(-0-1 loading process; (-0-1 unloading process. 

The broken curves in Figure 4 were calculated from eq. (16) by using the values of C1 and CZ ob- 
tained and the corresponding values of AEi in Figure 3. They agree well with the corresponding 
experimental results expressed by the solid curves for various values of the stress rate Air as shown 
in Figure 4. 

Moreover, the broken curves in Figure 2 were calculated from eq. (16) by using the coefficients 
C1 and Cp obtained from the experiments in the proportional loading tests and by using the corre- 

v 0.1 0.2 0.3 0.4 0.5 
N 

Fig. 4. Relations between Au and the fringe order per unit thickness for various values of AU 
(-O-) experiment; ( -  - -) eq. (16). 
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sponding values of hEi in Figure 1. In this case, the instantaneous strain a t  the instant of loading 
t = 0 in Figure 1 was assumed as the elastic strain A&, and the inelastic strain was assumed as A& 
= AJ3 - AEe. The broken curves agree well with the corresponding experimental results expressed 
by the solid curves for various values of the stress Au as shown in Figure 2. 

From foregoing discussions, neglecting the small amount of error, it is concluded that the deduced 
optical relation (16) of the first-order approximation gives good agreement with the actual obser- 
vations in creep and for proportional loading tests for plastically deforming polymer solid over the 
strain range AE = 0.15, independent of values of stress Au and of stress rate AU. 
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